Source code for stdog.spectra.trace_function

"""
Trace Functions
==============================

The core module responsible to calc trace functions.


Given a semi-positive definite matrix :math:`A \in \mathbb R^{|V|\\times|V|}`,
which has the set of eigenvalues given by :math:`\{\lambda_i\}` a trace of
a matrix function is given by

.. math:: 

    \mathrm{tr}(f(A)) = \sum\limits_{i=0}^{|V|} f(\lambda_i)

The methods for calculating such traces functions have a
cubic computational complexity lower bound,  :math:`O(|V|^3)`.
Therefore, it is not feasible forĀ  large networks. One way
to overcome such computational complexity it is use stochastic approximations
combined with a mryiad of another methods
to get the results with enough accuracy and with a small computational cost. 
The methods available in this module uses the Sthocastic Lanczos Quadrature, 
a procedure proposed in the work made by Ubaru, S. et.al. [1] (you need to cite them).

References
-----------

[1] Ubaru, S., Chen, J., & Saad, Y. (2017). Fast Estimation of tr(f(A)) via
Stochastic Lanczos Quadrature. SIAM Journal on Matrix Analysis and
Applications, 38(4), 1075-1099.

[2] Hutchinson, M. F. (1990). A stochastic estimator of the trace of the
influence matrix for laplacian smoothing splines. Communications in
Statistics-Simulation and Computation, 19(2), 433-450.
"""
import tensorflow as tf
import numpy as np

from emate.symmetric.slq import pyslq as slq


[docs]def estrada_index(L, num_vecs=100, num_steps=50, device="/gpu:0"): """ Given the Laplacian matrix :math:`L \in \mathbb R^{|V|\\times |V|}` s.t. for all :math:`v \in \mathbb R^{|V|}` we have :math:`v^T L v > 0` the Estrada Index is given by .. math:: \mathrm{tr}\exp(L) = \sum\limits_{i=0}^{|V|} e^{\lambda_i} Parameters ---------- L: sparse matrix num_vecs: int Number of random vectors used to approximate the trace using the Hutchison's trick [1] num_steps: int Number of Lanczos steps or Chebyschev's moments device: str "/cpu:int" our "/gpu:int" Returns ------- approximated_estrada_index: float References ---------- 1 - Ubaru, S., Chen, J., & Saad, Y. (2017). Fast Estimation of tr(f(A)) via Stochastic Lanczos Quadrature. SIAM Journal on Matrix Analysis and Applications, 38(4), 1075-1099. 2 - Hutchinson, M. F. (1990). A stochastic estimator of the trace of the influence matrix for laplacian smoothing splines. Communications in Statistics-Simulation and Computation, 19(2), 433-450. """ def trace_function(eig_vals): return tf.exp(eig_vals) approximated_estrada_index, _ = slq( L, num_vecs, num_steps, trace_function, device=device) return approximated_estrada_index
[docs]def entropy(L_sparse, num_vecs=100, num_steps=50, device="/gpu:0"): """Compute the spectral entropy .. math:: \sum\limits_{i=0}^{|V|} f(\lambda_i) f(\lambda) = \\begin{cases} -\lambda \log_2\lambda \ \ if \ \lambda > 0; \\newline 0,\ \ otherwise \end{cases} Parameters ---------- L: sparse matrix num_vecs: int Number of random vectors used to approximate the trace using the Hutchison's trick [1] num_steps: int Number of Lanczos steps or Chebyschev's moments device: str "/cpu:int" our "/gpu:int" Returns ------- approximated_spectral_entropy: float References ---------- 1 - Ubaru, S., Chen, J., & Saad, Y. (2017). Fast Estimation of tr(f(A)) via Stochastic Lanczos Quadrature. SIAM Journal on Matrix Analysis and Applications, 38(4), 1075-1099. 2 - Hutchinson, M. F. (1990). A stochastic estimator of the trace of the influence matrix for laplacian smoothing splines. Communications in Statistics-Simulation and Computation, 19(2), 433-450. """ def trace_function(eig_vals): return tf.map_fn( lambda val: tf.cond( val > 0, lambda: -val*tf.log(val), lambda: 0.), eig_vals) approximated_entropy, _ = slq( L_sparse, num_vecs, num_steps, trace_function, device=device) return approximated_entropy
__all__ = ["slq", "entropy", "estrada_index"]